tidywikidatar
- a new(ish) R packagetidywikidatar
workstidywikidatar
- an R package that facilitates exploring 'Wikidata' through tidy data framesWikidataQueryServiceR
- SPARQL queries!WikidataR
- all of Wikidata's complexity, which in R translates into nested lists that differ depending on the contenttidyverse
, a suite of packages based on a consistent grammar that has data frames at its core. There was not an easy way to use Wikidata in a way that is consistent with this logictidywikidatar
Check out website with documentation and examples: https://edjnet.github.io/tidywikidatar/
dplyr
piped routinesWikidata used for: defining city hubs for airports, getting coordinates of airports (for excluding those on islands), use unique identifiers for merging with train dataset https://edjnet.github.io/european_routes/
tidywikidatar
library(dplyr, warn.conflicts = FALSE)library("tidywikidatar")tw_enable_cache()tw_set_cache_folder( path = fs::path(fs::path_home_r(), "R", "tw_data"))tw_set_language(language = "en")tw_create_cache_folder(ask = FALSE)
library(dplyr, warn.conflicts = FALSE)library("tidywikidatar")tw_enable_cache(SQLite = FALSE)tw_set_cache_db(driver = "MySQL", host = "localhost", port = 3306, database = "tidywikidatar", user = "secret_username", pwd = "secret_password")
tw_search("European Union")
## # A tibble: 10 × 3## id label description ## <chr> <chr> <chr> ## 1 Q458 European Union economic and politi…## 2 Q319328 European Union antifascist resista…## 3 Q326124 directive of the European Union legislative act of …## 4 Q185441 Member state of the European Union state that is party…## 5 Q208202 European Union law body of treaties an…## 6 Q392918 European Union agency distinct body of th…## 7 Q1126192 European Union Prize for Literature award ## 8 Q308905 presidency of the Council of the European Union rotating presidency ## 9 Q207203 Europol police agency of th…## 10 Q276255 European Union Aviation Safety Agency European Union civi…
tw_search("European Union") %>% slice(1) %>% tw_get()
## # A tibble: 557 × 4## id property value rank ## <chr> <chr> <chr> <chr> ## 1 Q458 label_en European Union <NA> ## 2 Q458 alias_en EU <NA> ## 3 Q458 alias_en E.U. <NA> ## 4 Q458 alias_en eu <NA> ## 5 Q458 alias_en 🇪🇺 <NA> ## 6 Q458 alias_en Europe <NA> ## 7 Q458 P1448 Европейски съюз normal## 8 Q458 P1448 Evropská unie normal## 9 Q458 P1448 Den Europæiske Union normal## 10 Q458 P1448 Europäische Union normal## # … with 547 more rows
tw_search("European Union") %>% slice(1) %>% tw_get_property(p = "P31")
## # A tibble: 6 × 4## id property value rank ## <chr> <chr> <chr> <chr> ## 1 Q458 P31 Q4120211 normal## 2 Q458 P31 Q3623811 normal## 3 Q458 P31 Q1335818 normal## 4 Q458 P31 Q7210356 normal## 5 Q458 P31 Q1048835 normal## 6 Q458 P31 Q170156 normal
tw_search("European Union") %>% slice(1) %>% tw_get_property(p = "P31") %>% tw_label()
## # A tibble: 6 × 4## id property value rank ## <chr> <chr> <chr> <chr> ## 1 European Union instance of regional organization normal## 2 European Union instance of economic union normal## 3 European Union instance of supranational union normal## 4 European Union instance of political organization normal## 5 European Union instance of political territorial entity normal## 6 European Union instance of confederation normal
e.g. when did member states join the EU?
tw_get_qualifiers(id = "Q458", # European Union p = "P150") # contains administrative territorial entity
## # A tibble: 37 × 8## id property qualifier_id qualifier_prope… qualifier_value qualifier_value…## <chr> <chr> <chr> <chr> <chr> <chr> ## 1 Q458 P150 Q31 P580 +1958-01-01T00… time ## 2 Q458 P150 Q183 P580 +1958-01-01T00… time ## 3 Q458 P150 Q142 P580 +1958-01-01T00… time ## 4 Q458 P150 Q142 P1012 Q3769 wikibase-entity…## 5 Q458 P150 Q142 P1012 Q17012 wikibase-entity…## 6 Q458 P150 Q142 P1012 Q17054 wikibase-entity…## 7 Q458 P150 Q142 P1012 Q17063 wikibase-entity…## 8 Q458 P150 Q142 P1012 Q17070 wikibase-entity…## 9 Q458 P150 Q142 P1012 Q126125 wikibase-entity…## 10 Q458 P150 Q38 P580 +1958-01-01T00… time ## # … with 27 more rows, and 2 more variables: rank <chr>, set <dbl>
tw_get_qualifiers(id = "Q458", # European Union p = "P150") %>% # contains administrative territorial entity filter(qualifier_property == "P580") %>% # keep only "start time" transmute(country = tw_get_label(qualifier_id), start_time = qualifier_value)
## # A tibble: 28 × 2## country start_time ## <chr> <chr> ## 1 Belgium +1958-01-01T00:00:00Z## 2 Germany +1958-01-01T00:00:00Z## 3 France +1958-01-01T00:00:00Z## 4 Italy +1958-01-01T00:00:00Z## 5 Luxembourg +1958-01-01T00:00:00Z## 6 Kingdom of the Netherlands +1958-01-01T00:00:00Z## 7 Denmark +1973-01-01T00:00:00Z## 8 Republic of Ireland +1973-01-01T00:00:00Z## 9 Greece +1981-01-01T00:00:00Z## 10 Portugal +1986-01-01T00:00:00Z## # … with 18 more rows
tw_get_property_with_details()
Easy questions can be difficult: in which country is London?
tibble::tibble(city_qid = c("Q84")) %>% dplyr::mutate(city_label = tw_get_label(city_qid), country_qid = tw_get_p(id = city_qid, p = "P17")) %>% tidyr::unnest(country_qid) %>% mutate(country = tw_get_label(country_qid))
## # A tibble: 8 × 4## city_qid city_label country_qid country ## <chr> <chr> <chr> <chr> ## 1 Q84 London Q2277 Roman Empire ## 2 Q84 London Q110888 Kingdom of Essex ## 3 Q84 London Q105092 Kingdom of Mercia ## 4 Q84 London Q105313 Kingdom of Wessex ## 5 Q84 London Q179876 Kingdom of England ## 6 Q84 London Q161885 Great Britain ## 7 Q84 London Q174193 United Kingdom of Great Britain and Ireland## 8 Q84 London Q145 United Kingdom
tibble::tibble(city_qid = c("Q84", "Q220")) %>% dplyr::mutate(city_label = tw_get_label(city_qid), country_qid = tw_get_p(id = city_qid, p = "P17", preferred = TRUE, latest_start_time = TRUE, only_first = TRUE)) %>% dplyr::mutate(country_label = tw_get_label(country_qid))
## # A tibble: 2 × 4## city_qid city_label country_qid country_label ## <chr> <chr> <chr> <chr> ## 1 Q84 London Q145 United Kingdom## 2 Q220 Rome Q38 Italy
tw_search()
- search stringstw_query()
- simple queries based on property/value couplestw_get_all_with_p()
- get all items that have a given property, irrespective of their valuetw_get_wikipedia_page_links()
- Get all Wikidata Q identifiers of all Wikipedia pages linked to inputtw_get_wikipedia_page_section_links()
- All identifiers found in a specific section of a Wikipedia pageTake a single section:
df <- tw_get_wikipedia_page_section_links( title = "Elezione del Presidente della Repubblica Italiana del 2022", section_title = "IV scrutinio", language = "it")df %>% select(wikipedia_title, qid)
wikipedia_title | qid |
---|---|
Adnkronos | Q359875 |
Alberto Airola | Q14636378 |
Aldo Giannuli | Q3609233 |
Alessandro Altobelli | Q346945 |
Alessandro Barbero | Q960451 |
Carlo Nordio | Q19357364 |
Dino Zoff | Q180661 |
Domenico De Masi | Q3713005 |
pob_df <- df %>% select(qid) %>% mutate(name = tw_get_label(qid)) %>% mutate(place_of_birth_id = tw_get_p(id = qid, p = "P19",only_first = TRUE)) %>% mutate(place_of_birth = tw_get_label(place_of_birth_id)) %>% mutate(place_of_birth_coordinates = tw_get_p(id = place_of_birth_id, p = "P625", only_first = TRUE))pob_df
## # A tibble: 36 × 5## qid name place_of_birth_… place_of_birth place_of_birth_…## <chr> <chr> <chr> <chr> <chr> ## 1 Q359875 Adnkronos <NA> <NA> <NA> ## 2 Q14636378 Alberto Airola Q9474 Moncalieri 45,7.683333 ## 3 Q3609233 Aldo Giannuli Q3519 Bari 41.125277777778…## 4 Q346945 Alessandro Altobe… Q128211 Sonnino 41.414458333333…## 5 Q960451 Alessandro Barbero Q495 Turin 45.066666666667…## 6 Q19357364 Carlo Nordio Q5475 Treviso 45.672219444444…## 7 Q180661 Dino Zoff Q53131 Mariano del F… 45.916666666667…## 8 Q3713005 Domenico de Masi Q277969 Rotello 41.7475,15.0041…## 9 Q3723207 Elisabetta Belloni Q220 Rome 41.893055555556…## 10 Q726247 Franco Grillini Q94979 Pianoro 44.383333333333…## # … with 26 more rows
pob_sf <- pob_df %>% tidyr::separate( col = place_of_birth_coordinates, into = c("pob_latitude","pob_longitude"), sep = ",", remove = TRUE, convert = TRUE) %>% filter(is.na(pob_latitude)==FALSE) %>% sf::st_as_sf(coords = c("pob_longitude", "pob_latitude"), crs = 4326)library("ggplot2")pop_gg <- ggplot() + geom_sf(data = ll_get_nuts_it(level = 3, no_check_certificate = TRUE)) + geom_sf(data = pob_sf, colour = "deeppink4") + theme_minimal()
## ℹ Source: https://www.istat.it/it/archivio/222527## ℹ Istat (CC-BY)
occupation_df <- df %>% pull(qid) %>% tw_get_property(p = "P31") %>% # get "instance of" filter(value == "Q5") %>% # keep only humans tw_get_property(p = "P106") %>% # get occupation # filter(value!="Q82955") %>% # exclude politicians group_by(value) %>% count(sort = TRUE) %>% ungroup() %>% transmute(occupation = tw_get_label(value), n)
occupation | n |
---|---|
politician | 18 |
university teacher | 5 |
judge | 5 |
association football player | 5 |
jurist | 4 |
journalist | 4 |
lawyer | 3 |
association football manager | 3 |
historian | 2 |
sociologist | 2 |
writer | 2 |
high civil servant | 1 |
deputy chairperson | 1 |
essayist | 1 |
music director | 1 |
professor | 1 |
entrepreneur | 1 |
media proprietor | 1 |
conductor | 1 |
economist | 1 |
diplomat | 1 |
psychologist | 1 |
film director | 1 |
sports executive | 1 |
radio personality | 1 |
medievalist | 1 |
theatrical director | 1 |
academic | 1 |
basketball player | 1 |
physician | 1 |
film critic | 1 |
magistrate | 1 |
musician | 1 |
clerk | 1 |
banker | 1 |
television presenter | 1 |
president_df <- tw_search("Sergio Mattarella") %>% tw_filter_first(p = "P31", q = "Q5") president_df %>% tw_get_image()
## # A tibble: 1 × 2## id image ## <chr> <chr> ## 1 Q3956186 Presidente Mattarella.jpg
president_df %>% tw_get_image(format = "embed", width = 300) %>% pull(image)
## [1] "https://commons.wikimedia.org/w/index.php?title=Special:Redirect/file/Presidente Mattarella.jpg&width=300"
president_df %>% tw_get_image_metadata() %>% tidyr::pivot_longer(cols = -1, names_to = "property", values_transform = as.character)
## # A tibble: 18 × 3## id property value ## <chr> <chr> <chr> ## 1 Q3956186 image_filename "Presidente Mattarella.jpg" ## 2 Q3956186 object_name "Presidente Mattarella" ## 3 Q3956186 image_description "<a href=\"https://en.wikipedia.org/wiki…## 4 Q3956186 categories "Attribution only license|Images from th…## 5 Q3956186 assessments "" ## 6 Q3956186 credit "<a rel=\"nofollow\" class=\"external te…## 7 Q3956186 artist "Unknown author<span style=\"display: no…## 8 Q3956186 permission <NA> ## 9 Q3956186 license_short_name "Attribution" ## 10 Q3956186 license_url <NA> ## 11 Q3956186 license <NA> ## 12 Q3956186 usage_terms <NA> ## 13 Q3956186 attribution_required <NA> ## 14 Q3956186 copyrighted <NA> ## 15 Q3956186 restrictions "personality" ## 16 Q3956186 date_time "2020-04-14 18:33:11" ## 17 Q3956186 date_time_original "4 March 2015" ## 18 Q3956186 commons_metadata_extension "1.2"
This gets the Q identifier of all pages linked from a the Wikipedia page of a given Q identifier. Easy peasy :-)
president_df %>% tw_get_wikipedia(language = "it") %>% # gets url of Wikipedia page from QID tw_get_wikipedia_page_links(language = "it") %>% select(wikipedia_title, qid)
## # A tibble: 489 × 2## wikipedia_title qid ## <chr> <chr>## 1 Fabio Vander <NA> ## 2 Ordine per Meriti Eccezionali <NA> ## 3 Discussioni template:Capi di Stato d'Europa <NA> ## 4 1941 Q5231## 5 1987 Q2429## 6 1989 Q2425## 7 1990 Q2064## 8 1998 Q2089## 9 1999 Q2091## 10 2001 Q1988## # … with 479 more rows
tidywikidatar
Check out website with documentation and examples: https://edjnet.github.io/tidywikidatar/
dplyr
piped routinestidywikidatar
- a new(ish) R packagetidywikidatar
worksKeyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |